Introduction

Fruit flies (Diptera: Tephritidae) are pests of economic importance in many crops including mango, *Mangifera indica* L. Flies lay eggs into fruit where the subsequent larvae feed and develop, causing both quantitative and qualitative losses. Fruit maturity is known as a major factor of fruit fly infestation. Our aim is to better characterize and model the relationship between fruit maturity and mango infestation by fruit flies.

Material and Methods

The study was conducted in Reunion Island and Senegal on four mango cultivars (‘Kent’, ‘Irwin’, ‘Cogshall’ and ‘José’) and consisted in monitoring artificial infestations in the laboratory (no-choice tests in cages) with two *Bactrocera* species (*B. zonata* in Reunion Island and *B. dorsalis* (syn. *B. invadens*) in Senegal) and natural infestations in the orchard.

- **Fruit infestation recording**
- **Fruit maturity description**
 - qualitative indicator: visual phenological stages (Green, Turning and Ripe)
 - quantitative indicator: chlorophyll fluorescence (Fig. 1)

Results

- In the orchards, mangoes were mainly infested by *B. dorsalis* in Senegal and *B. zonata* in Reunion Island.
- In Reunion Island, infestation rates of turning/ripe mangoes observed in orchards without pesticide applications were 8%, 12% and 37% (2014) and 15%, 8% and 19% (2015) for cv. ‘Cogshall’, ‘José’ and ‘Kent’, respectively.
- Fruit flies displayed an egg-laying preference for mature mangoes but the maturity level at which the fruit elicits an egg-laying behavior of flies varied by fly species, mango cultivars (Tables 1, 2) and conditions of choice (in orchards) vs. no-choice (in cages) (Table 2).
- Infestation probability of mangoes (cv. ‘Cogshall’) significantly increased with the decrease in fruit variable chlorophyll fluorescence (Fig. 2).
- The relationship was modeled using a GLM with a binomial distribution and incorporated into a mango crop model predicting fruit yield and quality development (Fig. 3; see Grechi et al. in this conference).

Discussion and conclusion

- A further step is to improve the model by incorporating the effect of fly abundance (i.e., fly to mango ratio).
- From an applied point of view, the mango crop-pest model should be used to optimize harvest stage of mangoes for a compromise between fruit quality and risk of production losses, and design of management solutions for a sustainable mango production.